目前部分人工智能沉迷刷榜,在基準(zhǔn)測(cè)試時(shí)高分通過,表現(xiàn)優(yōu)異,但實(shí)際應(yīng)用中卻還會(huì)犯一些非?;A(chǔ)的錯(cuò)誤。
近日,有媒體報(bào)道,目前部分人工智能沉迷刷榜,在基準(zhǔn)測(cè)試時(shí)高分通過,表現(xiàn)優(yōu)異,但實(shí)際應(yīng)用中卻還會(huì)犯一些非?;A(chǔ)的錯(cuò)誤。這種沉迷刷榜,忽略實(shí)用性質(zhì)的行為造成了部分AI模型“高分低能”的現(xiàn)象。那么,對(duì)于AI發(fā)展而言,基準(zhǔn)測(cè)試是否必要?在實(shí)際應(yīng)用中,基準(zhǔn)測(cè)試哪些問題有待改進(jìn)完善呢?
AI模型哪家好,基準(zhǔn)測(cè)試來說話
AI模型應(yīng)該如何衡量其性能?
“目前AI模型能力的高低取決于數(shù)據(jù),因?yàn)锳I的本質(zhì)是學(xué)習(xí)數(shù)據(jù),輸出算法模型。為了公平衡量AI能力,很多機(jī)構(gòu)、企業(yè)甚至科學(xué)家會(huì)收集、設(shè)計(jì)不同的數(shù)據(jù)集,其中一部分喂給AI訓(xùn)練,得到AI模型,另外一部分?jǐn)?shù)據(jù)用于考核AI模型的能力,這就是基準(zhǔn)測(cè)試?!苯?,西安電子科技大學(xué)電子工程學(xué)院教授吳家驥接受科技日?qǐng)?bào)記者采訪時(shí)表示。
吳家驥介紹說,機(jī)器學(xué)習(xí)越來越多地用于各種實(shí)際應(yīng)用場(chǎng)景,例如圖像和語音識(shí)別、自動(dòng)駕駛汽車、醫(yī)學(xué)診斷等。因此,了解其在實(shí)踐中的行為和性能變得非常重要。其魯棒性和不確定性的高質(zhì)量估計(jì)對(duì)于許多功能至關(guān)重要,尤其是在深度學(xué)習(xí)領(lǐng)域。為掌握模型的行為,研究人員要根據(jù)目標(biāo)任務(wù)的基線來衡量其性能。
2010年,基于ImageNet數(shù)據(jù)集的計(jì)算機(jī)視覺競(jìng)賽的推出,激發(fā)了深度學(xué)習(xí)領(lǐng)域一場(chǎng)算法與數(shù)據(jù)的革命。從此,基準(zhǔn)測(cè)試成為衡量AI模型性能的一個(gè)重要手段。微軟公司的計(jì)算機(jī)科學(xué)家馬塞洛·里貝羅表示,基準(zhǔn)測(cè)試應(yīng)該是從業(yè)者工具箱中的一個(gè)工具,人們用基準(zhǔn)來代替對(duì)于模型的理解,通過基準(zhǔn)數(shù)據(jù)集來測(cè)試“模型的行為”。
例如,在自然語言處理領(lǐng)域,GLUE科研人員讓AI模型在包含上千個(gè)句子的數(shù)據(jù)集上訓(xùn)練,并在9個(gè)任務(wù)上進(jìn)行測(cè)試,來判斷一個(gè)句子是否符合語法,并分析情感,或者判斷兩個(gè)句子之間是否是邏輯蘊(yùn)涵等,一度難倒了AI模型。隨后,科研人員提高了基準(zhǔn)測(cè)試難度,一些任務(wù)要求AI模型不僅能夠處理句子,還要處理來自維基百科或新聞網(wǎng)站的段落后回答閱讀理解問題。僅經(jīng)過1年的發(fā)展,AI模型的性能從不到70分輕松達(dá)到90分,超越了人類。
吳家驥表示:“科學(xué)研究要有科學(xué)問題、方法、計(jì)算、試驗(yàn)對(duì)比等要素。因此在進(jìn)行科學(xué)研究,包括人工智能的科研中,也必須有計(jì)算與試驗(yàn)對(duì)比,也就是說AI算法的能力應(yīng)該是可測(cè)量的,目的是驗(yàn)證研究方法的可行性、有效性。因此,基準(zhǔn)測(cè)試很有必要,這樣才可以公平驗(yàn)證AI算法能力的高低好壞,避免各說各話,‘王婆賣瓜自賣自夸’?!?/p>
算法最終服務(wù)實(shí)踐,而非刷榜
有人說,高分是AI模型的興奮劑。于是,有的人工智能為了取得好成績(jī)而頻頻刷榜。
微軟公司2020年發(fā)布報(bào)告指出,包括微軟、谷歌和亞馬遜在內(nèi)的各種sota模型包含諸多隱含錯(cuò)誤,比如把句子里的“what's”改成“what is”,模型的輸出結(jié)果就會(huì)截然不同,而在此前,從沒有人意識(shí)到這些曾被評(píng)價(jià)還不錯(cuò)的商業(yè)模型竟會(huì)在應(yīng)用中如此糟糕。顯然,這樣訓(xùn)練出的AI模型就像一個(gè)只會(huì)考試、成績(jī)優(yōu)異的學(xué)生,可以成功通過科學(xué)家設(shè)置的各種基準(zhǔn)測(cè)試,卻不懂為什么。
“為了獲得好成績(jī),研究人員可能會(huì)使用特殊的軟硬件設(shè)置對(duì)模型進(jìn)行調(diào)整和處理,讓AI在測(cè)試中表現(xiàn)出色,但這些性能在現(xiàn)實(shí)世界中卻無法施展。”西安電子科技大學(xué)研究員尚坤指出。
在智能手機(jī)領(lǐng)域,我們談及手機(jī)的使用體驗(yàn)時(shí)一般都不免會(huì)涉及手機(jī)的性能表現(xiàn),這些性能通常會(huì)用跑分成績(jī)來表現(xiàn)。然而,我們常常會(huì)遇到一款手機(jī)的跑分成績(jī)處于排行榜領(lǐng)先水平,但是在實(shí)際使用過程中卻出現(xiàn)動(dòng)畫掉幀、頁面滑動(dòng)卡頓、應(yīng)用假死等的現(xiàn)象。全球頂級(jí)評(píng)測(cè)網(wǎng)站AnandTech的一篇報(bào)道曾對(duì)這種現(xiàn)象提出質(zhì)疑,指出某品牌手機(jī)跑分時(shí)啟動(dòng)了“性能模式”,而在平時(shí)的使用中“性能模式”很少被調(diào)用開啟。這種處理方式雖然能夠獲得高跑分,但是不能模擬用戶真實(shí)的使用情景,這讓基準(zhǔn)測(cè)試不具有參考意義。
尚坤認(rèn)為,針對(duì)上述問題,改進(jìn)基準(zhǔn)的方法主要有:一種是增加更多的數(shù)據(jù)集,讓基準(zhǔn)變得更難。用沒有見過的數(shù)據(jù)測(cè)試,這樣才能判斷AI模型是否能夠避免過擬合。研究人員可創(chuàng)建一個(gè)動(dòng)態(tài)數(shù)據(jù)收集和基準(zhǔn)測(cè)試平臺(tái),針對(duì)每個(gè)任務(wù),通過眾包的方式,提交他們認(rèn)為人工智能模型會(huì)錯(cuò)誤分類的數(shù)據(jù),成功欺騙到模型的樣例被加入基準(zhǔn)測(cè)試中。如果動(dòng)態(tài)地收集數(shù)據(jù)增加標(biāo)注,同時(shí)迭代式的訓(xùn)練模型,而不是使用傳統(tǒng)的靜態(tài)方式,AI模型應(yīng)該可以實(shí)現(xiàn)更實(shí)質(zhì)性的進(jìn)化。
尚坤說,另一種是縮小實(shí)驗(yàn)室內(nèi)數(shù)據(jù)和現(xiàn)實(shí)場(chǎng)景之間的差距。基線測(cè)試無論分?jǐn)?shù)多高,還是要用實(shí)際場(chǎng)景下的數(shù)據(jù)來檢驗(yàn),所以通過對(duì)數(shù)據(jù)集進(jìn)行更貼近真實(shí)場(chǎng)景的增強(qiáng)和擴(kuò)容使得基準(zhǔn)測(cè)試更加接近真實(shí)場(chǎng)景。如ImageNet-C數(shù)據(jù)集,可根據(jù)16種不同的實(shí)際破壞程度對(duì)原有的數(shù)據(jù)集進(jìn)行擴(kuò)充,可以更好模擬實(shí)際數(shù)據(jù)處理場(chǎng)景。
應(yīng)用廣泛,需盡快建立國(guó)家標(biāo)準(zhǔn)
美國(guó)麻省理工學(xué)院Cleanlab實(shí)驗(yàn)室的研究指出,常用的10個(gè)作為基準(zhǔn)的數(shù)據(jù)集中,有超過3%的標(biāo)注是錯(cuò)誤的,基于這些基準(zhǔn)跑分的結(jié)果則無參考意義。
“如果說,基準(zhǔn)測(cè)試堪稱人工智能領(lǐng)域的‘科舉制’,那么,‘唯分?jǐn)?shù)論’輸贏,是不可能訓(xùn)練出真正的好模型。要打破此種現(xiàn)象,一方面需要采用更全面的評(píng)估方法,另一方面可以考慮把問題分而治之,比如用多個(gè)AI模型解決復(fù)雜問題,把復(fù)雜問題轉(zhuǎn)化為簡(jiǎn)單確定的問題。簡(jiǎn)單且經(jīng)過優(yōu)化的基線模型往往優(yōu)于更復(fù)雜的方法。谷歌的研究人員為常見的AI任務(wù)引入了不確定性基線庫,來更好評(píng)估AI應(yīng)用的穩(wěn)健性和處理復(fù)雜不確定性的能力?!边h(yuǎn)望智庫人工智能事業(yè)部部長(zhǎng)、圖靈機(jī)器人首席戰(zhàn)略官譚茗洲指出。
雖然行業(yè)正在改變對(duì)于基準(zhǔn)的態(tài)度,但目前基準(zhǔn)測(cè)試研究仍然是一個(gè)小眾研究。谷歌在一份研究中采訪了工業(yè)界和學(xué)術(shù)界的53位AI從業(yè)者,其中許多人指出,改進(jìn)數(shù)據(jù)集不如設(shè)計(jì)模型更有成就感。
譚茗洲表示,AI應(yīng)用基準(zhǔn)研究是構(gòu)建國(guó)內(nèi)統(tǒng)一大市場(chǎng)的內(nèi)在需要,當(dāng)前AI已經(jīng)在國(guó)計(jì)民生的各類領(lǐng)域中得到廣泛應(yīng)用,更需要設(shè)立標(biāo)準(zhǔn)對(duì)AI模型進(jìn)行全面有效的評(píng)估,片面追求和采用高分AI模型,可能會(huì)讓模型在復(fù)雜極端場(chǎng)景下出現(xiàn)“智障”行為,并且可能由于訓(xùn)練和推理性能的低效,造成不良社會(huì)影響、經(jīng)濟(jì)損失和環(huán)境破壞。
譚茗洲強(qiáng)調(diào),AI應(yīng)用基準(zhǔn)研究關(guān)乎國(guó)家戰(zhàn)略。針對(duì)重要領(lǐng)域,建立我國(guó)自己的AI基準(zhǔn)測(cè)試標(biāo)準(zhǔn)、AI數(shù)據(jù)集、AI模型評(píng)估標(biāo)準(zhǔn)等迫在眉睫。
據(jù)了解,西安電子科技大學(xué)的DvcLab也在AI基準(zhǔn)測(cè)試這個(gè)領(lǐng)域進(jìn)行了前瞻性研究,特別是針對(duì)AI應(yīng)用基準(zhǔn)測(cè)試中數(shù)據(jù)集的整體質(zhì)量與動(dòng)態(tài)擴(kuò)展兩個(gè)關(guān)鍵問題,正在開發(fā)可在線協(xié)作的數(shù)據(jù)標(biāo)注與AI模型研發(fā)托管項(xiàng)目,并計(jì)劃今年陸續(xù)開源,正在為構(gòu)建國(guó)家AI基準(zhǔn)評(píng)估標(biāo)準(zhǔn)體系進(jìn)行積極探索。(華 凌)
(責(zé)任編輯:蔡文斌)